800+ LaTeX symbols α,β,γ,δ

Use the amssymb and amsmath package to create symbols in LaTeX

\usepackage{amssymb,amsmath}

Text-mode Commands

Caution! Caution! Don’t  use this command in math mode, such as \textbf{\textdollar \textdollar}

but why?

because, these are the text-based command but if you like to use math mode then use \textbf{\textdollar } \textbf{……} \textbf{\textdollar }

\textbf{\textasciicircum }
\textasciicircum
\textbf{\textasciitilde}
\textasciitilde
\textbf{\textasteriskcentered}
\textasteriskcentered
\textbf{\textbackslash}
\textbackslash
\textbf{\textbar}
\textbar
\textbf{\textbardbl}
\textbardbl
\textbf{\textbigcircle }
\textbigcircle
\textbf{\textbraceleft}
\textbraceleft
\textbf{\textbraceright}
\textbraceright
\textbf{\textbullet}
\textbullet
\textbf{\textcopyright}
\textcopyright
\textbf{\textdagger}
\textdagger
\textbf{\textdaggerdbl}
\textdaggerdbl
\textbf{\textdollar}
\textdollar
\textbf{\textellipsis}
\textellipsis
\textbf{\textemdash}
\textemdash
\textbf{\textendash}
\textendash
\textbf{\textexclamdown}
\textexclamdown
\textbf{\textgreater}
\textgreater
\textbf{\textless}
\textless
\textbf{\textordfeminine}
\textordfeminine
\textbf{\textordmasculine}
\textordmasculine
\textbf{\textparagraph }
\textparagraph
\textbf{\textperiodcentered}
\textperiodcentered
\textbf{\textpertenthousand}
\textpertenthousand
\textbf{\textperthousand}
\textperthousand
\textbf{\textquestiondown}
\textquestiondown
\textbf{\textquotedblleft}
\textquotedblleft
\textbf{\textquotedblright}
\textquotedblright
\textbf{\textquoteleft}
\textquoteleft
\textbf{\textquoteright}
\textquoteright
\textbf{\textregistered}
\textregistered
\textbf{\textsection}
\textsection
\textbf{\textsterling}
\textsterling
\textbf{\texttrademark}
\texttrademark
\textbf{\textunderscore }
\textunderscore
\textbf{\textvisiblespace}
\textvisiblespace

Symbols

\imath
\imath
\jmath
\jmath
\|
\|
\backslash
\backslash

Greek letters

\Gamma
\Gamma
\Delta
\Delta
\Lambda
\Lambda
\Phi
\Phi
\Pi
\Pi
\Psi
\Psi
\Sigma
\Sigma
\Theta
\Theta
\Upsilon
\Upsilon
\Xi
\Xi
\Omega
\Omega
\alpha
\alpha
\beta
\beta
\gamma
\gamma
\delta
\delta
\epsilon
\epsilon
\zeta
\zeta
\eta
\eta
\theta
\theta
\iota
\iota
\kappa
\kappa
\lambda
\lambda
\mu
\mu
\nu
\nu
\xi
\xi
\pi
\pi
\rho
\rho
\sigma
\sigma
\tau
\tau
\upsilon
\upsilon
\phi
\phi
\chi
\chi
\psi
\psi
\omega
\omega
\digamma
\digamma
\varepsilon
\varepsilon
\varkappa
\varkappa
\varphi
\varphi
\varpi
\varpi
\varrho
\varrho
\varsigma
\varsigma
\vartheta
\vartheta

Alphabetic symbols

\aleph
\aleph
\beth
\beth
\daleth
\daleth
\gimel
\gimel
\complement
\complement
\ell
\ell
\eth
\eth
\hbar
\hbar
\hslash
\hslash
\mho
\mho
\partial
\partial
\wp
\wp
\circledS
\circledS
\Bbbk
\Bbbk
\Finv
\Finv
\Game
\Game
\Im
\Im
\Re
\Re

Miscellaneous symbols

\blacktriangledown
\blacktriangledown
\blacktriangle
\blacktriangle
\#
\#
\&
\&
\angle
\angle
\backprime
\backprime
\bigstar
\bigstar
\blacklozenge
\blacklozenge
\blacksquare
\blacksquare
\bot
\bot
\clubsuit
\clubsuit
\diagdown
\diagdown
\diagup
\diagup
\diamondsuit
\diamondsuit
\emptyset
\emptyset
\exists
\exists
\flat
\flat
\forall
\forall
\heartsuit
\heartsuit
\infty
\infty
\lozenge
\lozenge
\measuredangle
\measuredangle
\nabla
\nabla
\natural
\natural
\neg
\neg
\nexists
\nexists
\prime
\prime
\sharp
\sharp
\spadesuit
\spadesuit
\sphericalangle
\sphericalangle
\square
\square
\surd
\surd
\top
\top
\triangle
\triangle
\triangledown
\triangledown
\varnothing
\varnothing

Binary operator symbols

*
*
+
+
-
\amalg
\amalg
\ast
\ast
\barwedge
\barwedge
\bigcirc
\bigcirc
\bigtriangledown
\bigtriangledown
\bigtriangleup
\bigtriangleup
\boxdot
\boxdot
\boxminus
\boxminus
\boxplus
\boxplus
\boxtimes
\boxtimes
\bullet
\bullet
\cap
\cap
\Cap
\Cap
\cdot
\cdot
\centerdot
\centerdot
\circ
\circ
\circledast
\circledast
\circledcirc
\circledcirc
\circleddash
\circleddash
\cup
\cup
\Cup
\Cup
\curlyvee
\curlyvee
\curlywedge
\curlywedge
\dagger
\dagger
\ddagger
\ddagger
\diamond
\diamond
\div
\div
\divideontimes
\divideontimes
\dotplus
\dotplus
\doublebarwedge
\doublebarwedge
\gtrdot
\gtrdot
\intercal
\intercal
\leftthreetimes
\leftthreetimes
\lessdot
\lessdot
\ltimes
\ltimes
\mp
\mp
\odot
\odot
\ominus
\ominus
\oplus
\oplus
\oslash
\oslash
\otimes
\otimes
\pm
\pm
\rightthreetimes
\rightthreetimes
\rtimes
\rtimes
\setminus
\setminus
\smallsetminus
\smallsetminus
\sqcap
\sqcap
\sqcup
\sqcup
\star
\star
\times
\times
\triangleleft
\triangleleft
\triangleright
\triangleright
\uplus
\uplus
\vee
\vee
\veebar
\veebar
\wedge
\wedge
\wr
\wr

Relational symbols and variants

<
<
=
=
>
>
\approx
\approx
\approxeq
\approxeq
\asymp
\asymp
\backsim
\backsim
\backsimeq
\backsimeq
\bumpeq
\bumpeq
\Bumpeq
\Bumpeq
\circeq
\circeq
\cong
\cong
\curlyeqprec
\curlyeqprec
\curlyeqsucc
\curlyeqsucc
\doteq
\doteq
\doteqdot
\doteqdot
\eqcirc
\eqcirc
\eqsim
\eqsim
\eqslantgtr
\eqslantgtr
\eqslantless
\eqslantless
\equiv
\equiv
\fallingdotseq
\fallingdotseq
\geq
\geq
\geqq
\geqq
\geqslant
\geqslant
\gg
\gg
\ggg
\ggg
\gnapprox
\gnapprox
\gneq
\gneq
\gneqq
\gneqq
\gtrapprox
\gtrapprox
\gtreqless
\gtreqless
\gtreqqless
\gtreqqless
\gtrless
\gtrless
\gtrsim
\gtrsim
\gvertneqq
\gvertneqq
\leq
\leq
\leqq
\leqq
\leqslant
\leqslant
\lessapprox
\lessapprox
\lesseqgtr
\lesseqgtr
\lesseqqgtr
\lesseqqgtr
\lessgtr
\lessgtr
\lesssim
\lesssim
\ll
\ll
\lll
\lll
\lnapprox
\lnapprox
\lneq
\lneq
\lneqq
\lneqq
\lnsim
\lnsim
\lvertneqq
\lvertneqq
\ncong
\ncong
\neq
\neq
\ngeq
\ngeq
\ngeqq
\ngeqq
\ngeqslant
\ngeqslant
\ngtr
\ngtr
\nleq
\nleq
\nleqq
\nleqq
\nleqslant
\nleqslant
\nless
\nless
\nprec
\nprec
\npreceq
\npreceq
\nsim
\nsim
\nsucc
\nsucc
\nsucceq
\nsucceq
\prec
\prec
\precapprox
\precapprox
\preccurlyeq
\preccurlyeq
\preceq
\preceq
\precnapprox
\precnapprox
\precneqq
\precneqq
\precnsim
\precnsim
\precsim
\precsim
\risingdotseq
\risingdotseq
\sim
\sim
\simeq
\simeq
\succ
\succ
\succapprox
\succapprox
\succcurlyeq
\succcurlyeq
\succeq
\succeq
\succnapprox
\succnapprox
\succneqq
\succneqq
\succnsim
\succnsim
\succsim
\succsim
\thickapprox
\thickapprox
\thicksim
\thicksim
\triangleq
\triangleq

Arrows

\circlearrowleft
\circlearrowleft
\circlearrowright
\circlearrowright
\curvearrowleft
\curvearrowleft
\curvearrowright
\curvearrowright
\downdownarrows
\downdownarrows
\downharpoonleft
\downharpoonleft
\downharpoonright
\downharpoonright
\hookleftarrow
\hookleftarrow
\hookrightarrow
\hookrightarrow
\leftarrow
\leftarrow
\Leftarrow
\Leftarrow
\leftarrowtail
\leftarrowtail
\leftharpoondown
\leftharpoondown
\leftharpoonup
\leftharpoonup
\leftleftarrows
\leftleftarrows
\leftrightarrow
\leftrightarrow
\Leftrightarrow
\Leftrightarrow
\leftrightarrows
\leftrightarrows
\leftrightharpoons
\leftrightharpoons
\leftrightsquigarrow
\leftrightsquigarrow
\Lleftarrow
\Lleftarrow
\longleftarrow
\longleftarrow
\Longleftarrow
\Longleftarrow
\longleftrightarrow
\longleftrightarrow
\Longleftrightarrow
\Longleftrightarrow
\longmapsto
\longmapsto
\longrightarrow
\longrightarrow
\Longrightarrow
\Longrightarrow
\looparrowleft
\looparrowleft
\looparrowright
\looparrowright
\Lsh
\Lsh
\mapsto
\mapsto
\multimap
\multimap
\nLeftarrow
\nLeftarrow
\nLeftrightarrow
\nLeftrightarrow
\nRightarrow
\nRightarrow
\nearrow
\nearrow
\nleftarrow
\nleftarrow
\nleftrightarrow
\nleftrightarrow
\nrightarrow
\nrightarrow
\nwarrow
\nwarrow
\rightarrow
\rightarrow
\Rightarrow
\Rightarrow
\rightarrowtail
\rightarrowtail
\rightharpoondown
\rightharpoondown
\rightharpoonup
\rightharpoonup
\rightleftarrows
\rightleftarrows
\rightleftharpoons
\rightleftharpoons
\rightrightarrows
\rightrightarrows
\rightsquigarrow
\rightsquigarrow
\Rrightarrow
\Rrightarrow
\Rsh
\Rsh
\searrow
\searrow
\swarrow
\swarrow
\twoheadleftarrow
\twoheadleftarrow
\twoheadrightarrow
\twoheadrightarrow
\upharpoonleft
\upharpoonleft
\upharpoonright
\upharpoonright
\upuparrows
\upuparrows

Relation symbols miscellaneous

\backepsilon
\backepsilon
\because
\because
\between
\between
\blacktriangleleft
\blacktriangleleft
\blacktriangleright
\blacktriangleright
\bowtie
\bowtie
\dashv
\dashv
\frown
\frown
\in
\in
\mid
\mid
\models
\models
\ni
\ni
\nmid
\nmid
\notin
\notin
\nparallel
\nparallel
\nshortmid
\nshortmid
\nshortparallel
\nshortparallel
\nsubseteq
\nsubseteq
\nsubseteqq
\nsubseteqq
\nsupseteq
\nsupseteq
\nsupseteqq
\nsupseteqq
\ntriangleleft
\ntriangleleft
\ntrianglelefteq
\ntrianglelefteq
\ntriangleright
\ntriangleright
\ntrianglerighteq
\ntrianglerighteq
\nvdash
\nvdash
\nVdash
\nVdash
\nvDash
\nvDash
\nVDash
\nVDash
\parallel
\parallel
\perp
\perp
\pitchfork
\pitchfork
\propto
\propto
\shortmid
\shortmid
\shortparallel
\shortparallel
\smallfrown
\smallfrown
\smallsmile
\smallsmile
\smile
\smile
\sqsubset
\sqsubset
\sqsubseteq
\sqsubseteq
\sqsupset
\sqsupset
\sqsupseteq
\sqsupseteq
\supset
\supset
\Supset
\Supset
\supseteq
\supseteq
\supseteqq
\supseteqq
\supsetneq
\supsetneq
\supsetneqq
\supsetneqq
\subset
\subset
\Subset
\Subset
\subseteq
\subseteq
\subseteqq
\subseteqq
\subsetneq
\subsetneq
\subsetneqq
\subsetneqq
\therefore
\therefore
\trianglelefteq
\trianglelefteq
\trianglerighteq
\trianglerighteq
\varpropto
\varpropto
\varsubsetneq
\varsubsetneq
\varsubsetneqq
\varsubsetneqq
\varsupsetneq
\varsupsetneq
\varsupsetneqq
\varsupsetneqq
\vartriangle
\vartriangle
\vartriangleleft
\vartriangleleft
\vartriangleright
\vartriangleright
\vdash
\vdash
\Vdash
\Vdash
\vDash
\vDash
\Vvdash
\Vvdash

Cumulative operators

\int
\int
\oint
\oint
\bigcap
\bigcap
\bigcup
\bigcup
\bigodot
\bigodot
\bigoplus
\bigoplus
\bigotimes
\bigotimes
\bigsqcup
\bigsqcup
\biguplus
\biguplus
\bigvee
\bigvee
\bigwedge
\bigwedge
\coprod
\coprod
\prod
\prod
\smallint
\smallint
\sum
\sum

Punctuations

.
.
/
/
|
|
,
,
;
;
\colon
\colon
:
:
!
!
?
?
\dotsb
\dotsb
\dotsc
\dotsc
\dotsi
\dotsi
\dotsm
\dotsm
\dotso
\dotso
\ddots
\ddots
\vdots
\vdots

Escapable symbols

$
\backslash$
\%
\%
\_
\_
\}
\}
\&
\&
\#
\#
\{
\{

Pairing delimiters

( )
( )
[ ]
[ ]
\lbrace \rbrace
\lbrace \rbrace
\lvert \rvert
\lvert \rvert
\lVert \rVert
\lVert \rVert
\langle \rangle
\langle \rangle
\lceil \rceil
\lceil \rceil
\lfloor \rfloor
\lfloor \rfloor

Nonpairing extensible symbols  

\vert
\vert
\Vert
\Vert
/
/
\backslash
\backslash
\arrowvert
\arrowvert
\Arrowvert
\Arrowvert
\bracevert
\bracevert

Extensible vertical arrows

\uparrow
\uparrow
\Uparrow
\Uparrow
\downarrow
\downarrow
\Downarrow
\Downarrow
\updownarrow
\updownarrow
\Updownarrow
\Updownarrow

Named operators

\arccos
\arccos
\arcsin
\arcsin
\arctan
\arctan
\arg
\arg
\cos
\cos
\cosh
\cosh
\cot
\cot
\coth
\coth
\csc
\csc
\deg
\deg
\det
\det
\dim
\dim
\exp
\exp
\gcd
\gcd
\hom
\hom
\inf
\inf
\injlim
\injlim
\ker
\ker
\lg
\lg
\lim
\lim
\liminf
\liminf
\limsup
\limsup
\ln
\ln
\log
\log
\max
\max
\min
\min
\Pr
\Pr
\projlim
\projlim
\sec
\sec
\sin
\sin
\sinh
\sinh
\sup
\sup
\tan
\tan
\tanh
\tanh
\varinjlim
\varinjlim
\varprojlim
\varprojlim
\varliminf
\varliminf
\varlimsup
\varlimsup

Math accents

\hat{b}
\hat{b}
\tilde{b}
\tilde{b}
\acute{b}
\acute{b}
\bar{b}
\bar{b}
\breve{b}
\breve{b}
\check{b}
\check{b}
\dot{b}
\dot{b}
\ddot{b}
\ddot{b}
\dddot{b}
\dddot{b}
\ddddot{b}
\ddddot{b}
\grave{b}
\grave{b}
\vec{b}
\vec{b}
\widehat{bbb}
\widehat{bbb}
\widetilde{bbb}
\widetilde{bbb}

Math operators

\int
\int
\iint
\iint
\iiint
\iiint
\iiiint
\iiiint
\idotsint
\idotsint

Accents and other characters

\'a
\’a
\'e
\’e
\'{\i}
\'{\i}
\'o
\’o
\'u
\’u
¿
?`
¡
!`
“ ”
“ ”
‘ ’
` ‘
\~n
\~n

Some types of fonts

{\rm Roman }
{\rm Roman }
{\em Enfático}
{\em Enfático}
{\bf Negrita }
{\bf Negrita }
{\it Itálica }
{\it Itálica }
{\sl Slanted }
{\sl Slanted }
{\sf Sans Serif }
{\sf Sans Serif }
{\sc Small Caps }
{\sc Small Caps }
{\tt Typewriter }
{\tt Typewriter }
\underline{Subrayado}
\underline{Subrayado}

Letter sizes

Tiny
{\tiny Tiny}
Script
{\scriptsize Script}
Foot
{\footnotesize Foot}
Small
{\small Small}
Normal
{\normalsize Normal}
large
{\large large}
Large
{\Large Large}
huge
{\huge huge}
Huge
{\Huge Huge}

Powers, subscripts, and superscripts

x^p
x^p
(2^2)^n
(2^2)^n
\sin^2(x)
\sin^2(x)
a_n
a_n
u_{N+1}
u_{N+1}
a_i^j
a_i^j
\sum_{n=1}^{N}u_n
\sum_{n=1}^{N}u_n
x^{n+1}
x^{n+1}
2^{2^n}
2^{2^n}
x^{\sin (x)+ \cos (x)}
x^{\sin (x)+ \cos (x)}
a_{n+1}
a_{n+1}
u_{_{N+1}}
u_{_{N+1}}
\int_a^b f(x) \, dx
\int_a^b f(x) \, dx
u_{ij}
u_{ij}

Square root

\sqrt{x+1}
\sqrt{x+1}
\displaystyle{ \sqrt[n]{x+\sqrt{x}} }
\displaystyle{ \sqrt[n]{x+\sqrt{x}} }
\sqrt[n]{x+\sqrt{x}}
\sqrt[n]{x+\sqrt{x}}

Fractions and two-level expressions

{x+1 \over x-1}
{x+1 \over x-1}
\displaystyle \frac{x+1}{x-1}
\displaystyle \frac{x+1}{x-1}
{{x+1 \over 3} \over x-1}
{{x+1 \over 3} \over x-1}
\displaystyle{\left( 1+ {1 \over x} \right)^{n+1 \over n}}
\displaystyle{\left( 1+ {1 \over x} \right)^{n+1 \over n}}
\displaystyle \left( 1+ \frac{1}{x} \right)^\frac{n+1}{n}
\displaystyle \left( 1+ \frac{1}{x} \right)^\frac{n+1}{n}
\displaystyle{\left( 1+ {1 \over x} \right)}^{\displaystyle{n+1 \over n}}
\displaystyle{\left( 1+ {1 \over x} \right)}^{\displaystyle{n+1 \over n}}
{x+1 \brace x-1}
{x+1 \brace x-1}
{x+1 \brack x-1}
{x+1 \brack x-1}

Other expressions requiring two levels

\displaystyle{a \stackrel{f}{\rightarrow} b}
\displaystyle{a \stackrel{f}{\rightarrow} b}
\displaystyle{\lim_{ x \rightarrow 0}} f(x)
\displaystyle{\lim_{ x \rightarrow 0}} f(x)
\displaystyle{a \choose b}
\displaystyle{a \choose b}
\displaystyle{\sum_{\substack{0<i<m\\0<j<n}}a_ib_j}
\displaystyle{\sum_{\substack{0<i< m\\0<j<n}}a_ib_j}
\prod_{\overset{i=0}{i\neq k}}^{n}\frac{w_i}{(w_i-w_k)}
\prod_{\overset{i=0}{i\neq k}}^{n}\frac{w_i}{(w_i-w_k)}

    \[L_{n,k}(x) = \prod_{\overset{i=0}{i\neq k}}^{n}\,\frac{x-x_i}{x_k-x_i} = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{ (x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n) }\]


$$L_{n,k}(x) = \prod_{\overset{i=0}{i\neq k}}^{n}\,\frac{x-x_i}{x_k-x_i} = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{ (x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n) }$$

Integral

\displaystyle{\int_C\boldsymbol{F}\cdot\, dr}
\displaystyle{\int_C\boldsymbol{F}\cdot\, dr}
\displaystyle{\oint_C\pmb{F}\cdot\, dr}
\displaystyle{\oint_C\pmb{F}\cdot\, dr}
\displaystyle{{\iint_D f(x,y)\,dA}}
\displaystyle{{\iint_D f(x,y)\,dA}}
\displaystyle{{\iiint_Q f(x,y,z)\,dA}}
\displaystyle{{\iiint_Q f(x,y,z)\,dA}}

Adjust delimiters to the size of a formula

\displaystyle \left[{x+1 \over (x-1)^2} \right]^n
\displaystyle \left[{x+1 \over (x-1)^2} \right]^n
\int_{a}^{b}2x\, dx = \left. x^2 \right|_{a}^{b}
\int_{a}^{b}2x\, dx = \left. x^2 \right|_{a}^{b}
\displaystyle \left\{ {n \in \N \atop r \neq 1 } \right.
\displaystyle \left\{ {n \in \N \atop r \neq 1 } \right.

Matrices

\begin{matrix} 1 & 2 & 3\\4 & 5 & 6\end{matrix}
\begin{matrix} 1 & 2 & 3\\4 & 5 & 6\end{matrix}
\begin{pmatrix} 1 & 2 & 3\\4 & 5 & 6\end{pmatrix}
\begin{pmatrix} 1 & 2 & 3\\4 & 5 & 6\end{pmatrix}
\begin{bmatrix} 1 & 2 & 3\\4 & 5 & 6\end{bmatrix}
\begin{bmatrix} 1 & 2 & 3\\4 & 5 & 6\end{bmatrix}
\begin{Bmatrix} 1 & 2 & 3\\4 & 5 & 6\end{Bmatrix}
\begin{Bmatrix} 1 & 2 & 3\\4 & 5 & 6\end{Bmatrix}
\begin{vmatrix} 1 & 2 & 3\\4 & 5 & 6\end{vmatrix}
\begin{vmatrix} 1 & 2 & 3\\4 & 5 & 6\end{vmatrix}

    \[\begin{Vmatrix} 1 & 2 & 3\\4 & 5 & 6\end{Vmatrix}\]


\begin{Vmatrix} 1 & 2 & 3\\4 & 5 & 6\end{Vmatrix}
\begin{smallmatrix} 1 & 2 & 3\\4 & 5 & 6\end{smallmatrix}
\begin{smallmatrix} 1 & 2 & 3\\4 & 5 & 6\end{smallmatrix}
\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\ -a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\\hdotsfor[2]{4}\\-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix}
\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\ -a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\\hdotsfor[2]{4}\\ -a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix}

Spacing  commands

ab Normal
ab
a \thinspace b
a \thinspace b
a \medspace b
a \medspace b
a \thickspace b
a \thickspace b
a \quad b
a \quad b
a\qquad b
a\qquad b
a  \negthinspace b
a \negthinspace b
a \negmedspace b
a \negmedspace b
a \negthickspace b
a \negthickspace b

Mohammed Anees

Hey there, welcome to aneescraftsmanship I am Mohammed Anees an independent developer/blogger. I like to share and discuss the craft with others plus the things which I have learned because I believe that through discussion and sharing a new world opens up

Leave a Reply

Your email address will not be published.